3.333 \(\int \frac{1}{x^4 \left (3+2 x^2\right ) \sqrt{1+2 x^2+2 x^4}} \, dx\)

Optimal. Leaf size=622 \[ -\frac{2 \sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{3 \left (\sqrt{2} x^2+1\right )}+\frac{2 \sqrt{2 x^4+2 x^2+1}}{3 x}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )}{9 \sqrt{15}}-\frac{\left (1+2 \sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}-\frac{2 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \sqrt{2 x^4+2 x^2+1}}+\frac{2 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{3 \sqrt{2 x^4+2 x^2+1}}+\frac{\sqrt [4]{2} \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt{2 x^4+2 x^2+1}}{9 x^3} \]

[Out]

-Sqrt[1 + 2*x^2 + 2*x^4]/(9*x^3) + (2*Sqrt[1 + 2*x^2 + 2*x^4])/(3*x) - (2*Sqrt[2
]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(3*(1 + Sqrt[2]*x^2)) + (2*ArcTan[(Sqrt[5/3]*x)/Sqr
t[1 + 2*x^2 + 2*x^4]])/(9*Sqrt[15]) + (2*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x
^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4]
)/(3*Sqrt[1 + 2*x^2 + 2*x^4]) - (2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x
^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(9*Sqr
t[1 + 2*x^2 + 2*x^4]) - (2*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1
 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(9*(2 - 3*Sq
rt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) - ((1 + 2*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2
*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/
4])/(9*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (2^(1/4)*(3 + Sqrt[2])*(1 + Sqrt[2]*x^
2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24
, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*
x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.936202, antiderivative size = 622, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 9, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.31 \[ -\frac{2 \sqrt{2} \sqrt{2 x^4+2 x^2+1} x}{3 \left (\sqrt{2} x^2+1\right )}+\frac{2 \sqrt{2 x^4+2 x^2+1}}{3 x}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{\frac{5}{3}} x}{\sqrt{2 x^4+2 x^2+1}}\right )}{9 \sqrt{15}}-\frac{\left (1+2 \sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \sqrt [4]{2} \sqrt{2 x^4+2 x^2+1}}-\frac{2 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{9 \sqrt{2 x^4+2 x^2+1}}+\frac{2 \sqrt [4]{2} \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{3 \sqrt{2 x^4+2 x^2+1}}+\frac{\sqrt [4]{2} \left (3+\sqrt{2}\right ) \left (\sqrt{2} x^2+1\right ) \sqrt{\frac{2 x^4+2 x^2+1}{\left (\sqrt{2} x^2+1\right )^2}} \Pi \left (\frac{1}{24} \left (12-11 \sqrt{2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac{1}{4} \left (2-\sqrt{2}\right )\right )}{27 \left (2-3 \sqrt{2}\right ) \sqrt{2 x^4+2 x^2+1}}-\frac{\sqrt{2 x^4+2 x^2+1}}{9 x^3} \]

Warning: Unable to verify antiderivative.

[In]  Int[1/(x^4*(3 + 2*x^2)*Sqrt[1 + 2*x^2 + 2*x^4]),x]

[Out]

-Sqrt[1 + 2*x^2 + 2*x^4]/(9*x^3) + (2*Sqrt[1 + 2*x^2 + 2*x^4])/(3*x) - (2*Sqrt[2
]*x*Sqrt[1 + 2*x^2 + 2*x^4])/(3*(1 + Sqrt[2]*x^2)) + (2*ArcTan[(Sqrt[5/3]*x)/Sqr
t[1 + 2*x^2 + 2*x^4]])/(9*Sqrt[15]) + (2*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x
^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4]
)/(3*Sqrt[1 + 2*x^2 + 2*x^4]) - (2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x
^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(9*Sqr
t[1 + 2*x^2 + 2*x^4]) - (2*2^(1/4)*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1
 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(9*(2 - 3*Sq
rt[2])*Sqrt[1 + 2*x^2 + 2*x^4]) - ((1 + 2*Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2
*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/
4])/(9*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (2^(1/4)*(3 + Sqrt[2])*(1 + Sqrt[2]*x^
2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24
, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(27*(2 - 3*Sqrt[2])*Sqrt[1 + 2*x^2 + 2*
x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 69.8287, size = 556, normalized size = 0.89 \[ - \frac{2 \sqrt{2} x \sqrt{2 x^{4} + 2 x^{2} + 1}}{3 \left (\sqrt{2} x^{2} + 1\right )} + \frac{2 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{3 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{\sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 \sqrt{2} + 8\right ) \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{36 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{\sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{9 \sqrt{2 x^{4} + 2 x^{2} + 1}} - \frac{2 \sqrt [4]{2} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (\sqrt{2} x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{9 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{2^{\frac{3}{4}} \sqrt{\frac{2 x^{4} + 2 x^{2} + 1}{\left (\sqrt{2} x^{2} + 1\right )^{2}}} \left (2 + 3 \sqrt{2}\right ) \left (\sqrt{2} x^{2} + 1\right ) \Pi \left (- \frac{11 \sqrt{2}}{24} + \frac{1}{2}; 2 \operatorname{atan}{\left (\sqrt [4]{2} x \right )}\middle | - \frac{\sqrt{2}}{4} + \frac{1}{2}\right )}{54 \left (- 3 \sqrt{2} + 2\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}} + \frac{2 \sqrt{15} \operatorname{atan}{\left (\frac{\sqrt{15} x}{3 \sqrt{2 x^{4} + 2 x^{2} + 1}} \right )}}{135} + \frac{2 \sqrt{2 x^{4} + 2 x^{2} + 1}}{3 x} - \frac{\sqrt{2 x^{4} + 2 x^{2} + 1}}{9 x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**4/(2*x**2+3)/(2*x**4+2*x**2+1)**(1/2),x)

[Out]

-2*sqrt(2)*x*sqrt(2*x**4 + 2*x**2 + 1)/(3*(sqrt(2)*x**2 + 1)) + 2*2**(1/4)*sqrt(
(2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*elliptic_e(2*ata
n(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(3*sqrt(2*x**4 + 2*x**2 + 1)) - 2**(1/4)*sqrt((
2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2*sqrt(2) + 8)*(sqrt(2)*x**2 + 1)*e
lliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(36*sqrt(2*x**4 + 2*x**2 + 1)) -
 2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*e
lliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(9*sqrt(2*x**4 + 2*x**2 + 1)) -
2*2**(1/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(sqrt(2)*x**2 + 1)*
elliptic_f(2*atan(2**(1/4)*x), -sqrt(2)/4 + 1/2)/(9*(-3*sqrt(2) + 2)*sqrt(2*x**4
 + 2*x**2 + 1)) + 2**(3/4)*sqrt((2*x**4 + 2*x**2 + 1)/(sqrt(2)*x**2 + 1)**2)*(2
+ 3*sqrt(2))*(sqrt(2)*x**2 + 1)*elliptic_pi(-11*sqrt(2)/24 + 1/2, 2*atan(2**(1/4
)*x), -sqrt(2)/4 + 1/2)/(54*(-3*sqrt(2) + 2)*sqrt(2*x**4 + 2*x**2 + 1)) + 2*sqrt
(15)*atan(sqrt(15)*x/(3*sqrt(2*x**4 + 2*x**2 + 1)))/135 + 2*sqrt(2*x**4 + 2*x**2
 + 1)/(3*x) - sqrt(2*x**4 + 2*x**2 + 1)/(9*x**3)

_______________________________________________________________________________________

Mathematica [C]  time = 0.176342, size = 219, normalized size = 0.35 \[ \frac{36 x^6+30 x^4+12 x^2-(3+15 i) \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^3 F\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+18 i \sqrt{1-i} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^3 E\left (\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )+2 (1-i)^{3/2} \sqrt{1+(1-i) x^2} \sqrt{1+(1+i) x^2} x^3 \Pi \left (\frac{1}{3}+\frac{i}{3};\left .i \sinh ^{-1}\left (\sqrt{1-i} x\right )\right |i\right )-3}{27 x^3 \sqrt{2 x^4+2 x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^4*(3 + 2*x^2)*Sqrt[1 + 2*x^2 + 2*x^4]),x]

[Out]

(-3 + 12*x^2 + 30*x^4 + 36*x^6 + (18*I)*Sqrt[1 - I]*x^3*Sqrt[1 + (1 - I)*x^2]*Sq
rt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt[1 - I]*x], I] - (3 + 15*I)*Sqrt[1 -
 I]*x^3*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[1 -
 I]*x], I] + 2*(1 - I)^(3/2)*x^3*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*Ell
ipticPi[1/3 + I/3, I*ArcSinh[Sqrt[1 - I]*x], I])/(27*x^3*Sqrt[1 + 2*x^2 + 2*x^4]
)

_______________________________________________________________________________________

Maple [C]  time = 0.023, size = 260, normalized size = 0.4 \[ -{\frac{1}{9\,{x}^{3}}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}+{\frac{2}{3\,x}\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}-{\frac{2\,{\it EllipticF} \left ( x\sqrt{-1+i},1/2\,\sqrt{2}+i/2\sqrt{2} \right ) }{9\,\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{ \left ({\frac{2}{3}}-{\frac{2\,i}{3}} \right ) \left ({\it EllipticF} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) -{\it EllipticE} \left ( x\sqrt{-1+i},{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) \right ) }{\sqrt{-1+i}}\sqrt{1+ \left ( 1-i \right ){x}^{2}}\sqrt{1+ \left ( 1+i \right ){x}^{2}}{\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}}+{\frac{4}{27\,\sqrt{-1+i}}\sqrt{-i{x}^{2}+{x}^{2}+1}\sqrt{i{x}^{2}+{x}^{2}+1}{\it EllipticPi} \left ( x\sqrt{-1+i},{\frac{1}{3}}+{\frac{i}{3}},{\frac{\sqrt{-1-i}}{\sqrt{-1+i}}} \right ){\frac{1}{\sqrt{2\,{x}^{4}+2\,{x}^{2}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^4/(2*x^2+3)/(2*x^4+2*x^2+1)^(1/2),x)

[Out]

-1/9*(2*x^4+2*x^2+1)^(1/2)/x^3+2/3*(2*x^4+2*x^2+1)^(1/2)/x-2/9/(-1+I)^(1/2)*(1+(
1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/
2),1/2*2^(1/2)+1/2*I*2^(1/2))+(2/3-2/3*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1
+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I
*2^(1/2))-EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2)))+4/27/(-1+I)^(1/2)
*(-I*x^2+x^2+1)^(1/2)*(I*x^2+x^2+1)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi(x*(-1
+I)^(1/2),1/3+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1}{\left (2 \, x^{2} + 3\right )} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*x^4 + 2*x^2 + 1)*(2*x^2 + 3)*x^4),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(2*x^4 + 2*x^2 + 1)*(2*x^2 + 3)*x^4), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{{\left (2 \, x^{6} + 3 \, x^{4}\right )} \sqrt{2 \, x^{4} + 2 \, x^{2} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*x^4 + 2*x^2 + 1)*(2*x^2 + 3)*x^4),x, algorithm="fricas")

[Out]

integral(1/((2*x^6 + 3*x^4)*sqrt(2*x^4 + 2*x^2 + 1)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{x^{4} \left (2 x^{2} + 3\right ) \sqrt{2 x^{4} + 2 x^{2} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**4/(2*x**2+3)/(2*x**4+2*x**2+1)**(1/2),x)

[Out]

Integral(1/(x**4*(2*x**2 + 3)*sqrt(2*x**4 + 2*x**2 + 1)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{2 \, x^{4} + 2 \, x^{2} + 1}{\left (2 \, x^{2} + 3\right )} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(2*x^4 + 2*x^2 + 1)*(2*x^2 + 3)*x^4),x, algorithm="giac")

[Out]

integrate(1/(sqrt(2*x^4 + 2*x^2 + 1)*(2*x^2 + 3)*x^4), x)